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Relativistic Theory of Nuclear Forces 
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A theory of nuclear forces is proposed which results in a nonlinear relativistic 
equation for their potential. This equation is used to explain nuclear saturation. 

Let us consider the movement  of  a particle having mass m in a nuclear 
field that is described by the scalar potential q}. It  would be ra t ional  to 
obtain the equation of this movement  in an inertial frame of  reference by 
means of the differential law of the conservation of energy and momentum: 

~3Tik/Ox; = 0 (1) 

where the energy-momentum tensor T ik has the form (Bogolubov and 
Shirkov, 1984) 

Tik = c2p ds ds ~ gikg,t Oq) + - - - -  - g 2-p-  2 (2 )  

where p is the density of  the particle mass at rest, 2 is a constant, rn~ is the 
mass of the neutral pion at rest, as it is the carrier of  the nuclear interaction 
which preserves the charges of  the interacting particles, ds2= gik dx; dx k, 
where g;k is the Minkowski tensor, and the potential r is described by the 
equation 

82{P rn2c2 #P (3) 

8x n 8x-------~ + ~ q} = -m--p 

where # is a constant and rnp is the proton mass at rest. 
This approach to the problem is unacceptable because of the following 

reasons: 
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1. As will be shown later, the system of equations (1) - (3)  results in 
the following contradictory equation of  the particle's movement: 

d 2 x k  = ~;gik Oq) I.t 
ds  2 ~x--~, "~ - ,~mpC2 (4) 

The contradiction is evident from the following considerations. If we 
multiply equation (4) by gtk dxt/ds and take into account that ds is the 
Minkowski interval, then we obtain the equality 

1 d (  dxidx__k'~ dq~ 
2 ds g~k ds ds J = ? ds 

Since the left-hand side of  this equality is zero, we get the following 
result: dq~/ds = 0, which, as a rule, cannot take place. 

2. The linear equation (3) can give the right description of  the nuclear 
potential only for relatively small values of  the potential ~0 and its gradient. 
When the distance between interacting particles is small or the value of r 
is large, then equation (3) contradicts the experimental data. Nuclear forces 
can both attract and repulse, contrary to (3), which results in the well- 
known phenomenon of nuclear saturation (Naumov, 1984). 

To overcome these difficulties, let us assume that the particle mass m 
depends on the nuclear potential ~0. On the basis of  this assumption we 
represent the density p in (2) as follows: 

p = pof(qg), f (0 )  = 1 (5) 

where Po is the density of  the particle mass at rest when ~0 = 0 and f(q0 is 
an unknown function. 

Then from (1) and (2) we obtain 

r 00X -~i ~( P~ J -~s + cEp o~ '(dxk'] dx~ 

+,[(gi.g.t_~gikg,,) ~-~' ~-~x~ 00,9_ g ikm,c 2~._.ux_j=O~] (6) 
Equation (6) can be represented as follows: 

po ) ds j ds +p as. 

1 ik Oq~ [ OZq~ m2c z h 
+~5c2g ~-~xi~Ox--~xn t---hT--~o)=O (7) 

Let us assume that m 0 denotes the mass at rest of  the particle when 
q~ = 0. Then the differential equation expressing the conservation of  this 
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mass has the well-known foma (Landau and Lifshitz, 1973) 

a( bx , p0 o (8) 

Therefore, formula (7) acquires the form 

['d2x k I dfdxk'~ 1 ,k 8~ ( 02~o m~c 2 ) 
p ~--~s 2 + ~f -~s ~s ) + -~c 2 g ~-~ \ ~ + - ~ -  ~o . = 0 (9) 

After multiplying equation (9) by glk dx~/ds we obtain 

p d , /  dx 'dxk \  p d f  1 dq~( 8~q~ m2c = ) 
~gzk-~s --~--s ) + ~ s s  + )-~c2-~-s \ ~  + (0. = 0  (10) 2ds - - ~  

Since the first summand in (10) is zero, this equation gives 

rn2 c 2 1 df 
d2q~ + " ' " -  --2c2p (11) 

6~X,,~,X n h2 (o= f &o 

Therefore, from (9) and ( t l )  we derive 

dax ~ d ( l n f ) d x  k gik S(lnf)=o__:. 
ds 2 + ds ds 8X i 

(12) 

Equations (10) and (1 t) have no contradictions only 'when the follow- 
ing derivative is not equal to zero: df/dq #0.  Equation (12) is not 
contradictory either, as after multiplying it by gtk dxt/ds we get an identity. 
This identity shows that the first equation in (12) is derived from the other 
three. 

Let us consider the nonrelativistic case. Then equation (12) acquires 
the form 

d2x ~ Cq(C 2 l n f )  x ~ 
dt 2 ~x ~ , ~ = 1, 2, 3, t = -  (13) 

c 

It follows from (13) that the function c 2 l n f c a n  be identified with the 
potential q: 

c 2 l n f  = q (14) 

From (14) we find the function f(q0 which also satisfies condition (5): 
f (0)  = 1, and 

f (q)  = exp(q/c 2) (15) 

Thus equation (13) takes the form 

d2x ~" 8Cp 
dt 2 - 8 x  ~ ( 1 6 )  
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From (5) and (15) we derive 

P = Po exp(~o/c2) (17) 

After substituting (15) for f(q~) in (11) and (12) we obtain 

dZx k dq~ dxk  ~o = 0 (18) 
c2 cls~ + ds ds ~x k 

t~2Cp m2c 2 ( ~ )  
O x n ~ x  n "q- - - ~  ~l) = - -  ,~p, P = Po exp (19) 

Instead of 2 we can use the standard strong interaction constant G. 
Then we have 

2 = 4nG 2/m~ (20) 

To explain this, let us consider equations (18) and (19) in the nonrel- 
ativistic case of the interaction of two protons, whose masses are mp, when 
Iq~l ,~ c 2. Then in this case, after substituting (20) for 2 in (19), we obtain 
the well-known equations in which the value mpq~ is taken as the nuclear 
potential. 

After making the transition from the differential law of energy- 
momentum conservation (1) to the integral law of energy-momentum con- 
servation and taking (2) and (17) into account, we obtain the following 
result. The relativistic energy E and mass m of a particle can be determined 
by 

E = me 2, m = mo exp(fp/c2)/( 1 -/)2/C2) 1/2 (21) 

where v is the speed of the particle and m o is its mass at rest when ~o = 0. 
After the use of formula (21), equation (18) takes the form 

m dt } - 1 - - ~  m o x ~ ,  ~ = 1 , 2 , 3  (22) 

v 2) 0~0 x ~ 
d(ln E)  - - c  ~ c2~t ' c - 1 - -  t = - -  ( 2 3 )  

Let us consider equation (23) in the stationary case: dq~/dt = 0. Then 
from (23) we get 

mc 2 = mo c2 exp(qg /c2) /(1 - v2/c 2) 1/2 = const (24) 

In the nonrelativistic case, after taking the logarithm of expression 
(24), we obtain 

mov2/2 + moq~ = const (25) 
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Formula (25) represents the classical nonrelativistic law of energy 
conservation where the summand m0~o is the potential energy. 

If we also have an electromagnetic field having potentials Ai, then, 
instead of (9), the differential law of energy-momentum conservation (1) 
results in the following equation of the particle movement: 

ff~C2~ + as aS / +~C 2g OxikOxnOxn'4;--~'~ -TQ) J 
dx" OA. OAi (26) 

-- OogikFi. ~ = O, Fi. = Ox i Ox" 

where 0o is the charge density in the local inertial coordinate system in 
which the particle is at rest, 

Since equation (26) must be the same for various points of the particle, 
the density P0 must be proportional to the charge density 00: po/Oo = mo/q, 
where q is the charge of the particle. 

As F/. = -F.~, we have the identity 

�9 dx t dx" 
gtk Ts  gikF~" Ts  = 0 (27) 

Therefore, after multiplying equation (26) by g~k dx~/ds we obtain the 
same equation (19) for the potential ~o as we do in the case of A~ = 0. From 
(19) and (26) we derive the following equation of the particle movement: 

/ d2x k d~odx k Oq)) dx ~' 
rn~~176 + ds ds ~ / - - q g i k F i . - ~ s = O  (28) 

where q is the particle charge and mC0 ~) is its mass at rest when the nuclear 
potential equals q~. As a result of formulas (5) and (15), this mass can be 
determined by the formula 

m~o ~') =mo exp(~o /c z) (29) 

It must be noted that due to identity (27), after multiplying equation 
(28) by gtk dxt/ds, we get an identity which shows that equation (28) has no 
contradictions. The existence of this identity leads to the fact that the 
equation of the nuclear field (19) is the consequence of the differential law 
of energy-momentum conservation (1)-(2). 

It must also be noted that the equation of particle movement (28), 
which has charge q and mass m~0 ~) at rest (29), can be derived from the 
classical action S: 

f?( ) 6S =5  -m~o~)eds-q  A~dx = 0  (30) 
o r 
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where Po and P1 are fixed space-time points, ds is the Minkowski interval, 
and 6S is the variation of  S. 

: To prove (30), we must calculate 6S: 

6S = - m(~ ds + ~ 6x~c ds 
0 

+ q cgAn 1 + q-c A~d(rx~) c ~x - -7  6xi dx" 
...i 

"~pPiOxi[dlql(O~~ 

+crn(~ d(p-ff~ ds+c \Ox"  Oxi] dx" = 0  (31) 

From (31) and (29) we get the equation 

" "f  2 ~S ~dzxi dxi ) dx" 
as as -S ;  - qF,. - # ;  = O 

which is identical to equation (28). 
We turn now to nonlinear equation (19) describing the nuclear poten- 

tial q~. First let us prove the theorem that in the stationary case O~o/Ox ~ = 0 
the solution q~ of  equation (19) is nonpositive: ~0 -< 0. 

To prove this, let us assume that at some point M of three-dimensional 
space we have the inequality ~0(M) > 0. Then, as q~(oo) = 0, a certain point 
Mo must exist at which the function ~o has a positive maximum. Therefore, 
at the given point Mo the following correlations must be fulfilled: 

~o(Mo) > O, &o(Mo)/Ox ~ = O, 82q~(Mo)/Ox ~2 ~ 0, ~ = 1, 2, 3 (33) 

I n  the stationary case from (19) and (33) we obtain the following 
inequality: 

0 >  ~ ~2~~ m:c2 ( ~ )  
=l 8x ~2 h2 ~p 2poexp (34) 

From (34) we get the inequality po(Mo) < 0, which is impossible. The 
given contradiction shows that the solution ~o of  equation (19), which is 
independent of  the time factor and which vanishes at infinity, fulfills the 
inequality 

~0<__ 0 (35) 

It follows from (35) that in the stationary case when 4o ~ 0 the mass 
m(o 'p) of  a particle at rest is smaller than its value mo when ~0 = 0. This 
property demonstrates the well-known fact that the nucleus bound energy 
is negative. 
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Let us consider equation (19) in the stationary spherically symmetric 
case. Then equation (19) takes the form 

(p" + 2(p'/r - v2q) = ,tp 

q0 = q0(r), p=p(r ) ,  v=rn,~c/h, Y-m--'[(XI)2"t-(xZ)2-~(X3)2]l/2 (36) 

As is known, we can transform the differential equation (36) to an 
integral equation describing the function ~o(r) which fulfiUs the condition 
~0(oe) = 0. This integral equation has the form 

q~(r) = ~vr zp(z)[exp( - v ( r  + z)) - exp( - v l r  - z[)] dz (37) 

By performing the differentiation of equation (37) and then the 
integration by parts of the right-hand side of the equation we obtain 

qo'(r) = 2~r2 p'(z)M(r, z) dz (38) 

where 

M(r, z) = K(r, - z )  - K(r, z) 
(39) 

K(r, z) -- exp( -v l r  - z l ) ( 1  - varz  + vlr  - zl )  

Note the following property of the function M(r, z). It is not difficult 
to prove that the function M(r, z) is nonnegative: 

M(r, z) >- 0 (40) 

After substituting (17) for p in equation (38) we obtain 

2v3r 2 2  fo ~ ex _/q)(Z)~c 2 _ [ q~'(Z)]dZc-----~j (41) q~'(r) = p~ ) M(r, z) p'o(Z) + po(z) 

It is necessary to note that when equation (26) was obtained attention 
was drawn to the fact that the density P0 was proportional to the charge 
density 00. As is known, the charge density 00 of the nuclei decreases when 
the radius r increases (Naumov, 1984). Hence we have the inequality 
p'(r) < O. Therefore, if the second summand had been zero in the square 
brackets in equation (41) we would have the inequality q)'(r) > 0 and as a 
result the nuclear forces would attract. 

But it is well known that nuclear forces can also repulse (Naumov, 
1984). This property can be explained by the second summand in the 
square brackets in equation (41). This summand appears in equation (41) 
because of formula (17). 

When r ~> 1Iv we have the Yukawa solution for which the derivative 
rp'(r) is nonnegative: q/(r) > 0. To find a condition which must be fulfilled 
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to have the negative derivative ~0'(r) at certain points r of  the region 
0 < r <- ro ~ 1/v, we use the following functions: 

;~ [,oo ex fqffz)'~ 
l , (r)  = ~-~r2J ~ p~ -~ i - - )M(r , z )p ' o ( z )d z  

(42) 

6(r)= ~ fo~176 exp(~) M(r,z)Po(Z)kO'(z)l dz 
It is seen that the function lz(r) is always positive. Let us assume that 

at a certain point r = • we have the following inequality: 

I2(f) > 110:) (43) 

Then we can prove the statement that a certain point r = r~ exists at 
which the derivative tp'(r~) is negative: r < 0. 

To prove this, let us assume that q~'(r) > 0 at any point r. Then from 
(41)- (43)  we find 

q~'(r) = Ii (r") - I2(~) < 0 

Therefore, we get a contradiction. So, if we have a certain point f at 
which inequality (43) is fulfilled, then a region of  the point r must exist at 
which q~'(r) < 0 and hence in this case the nuclear forces repulse. 

It follows from condition (42)- (43)  that there are two cases in which 
the inequality ~0'< 0 can hold: 

1. The case of  nuclear saturation. This case can take place if the 
function Iq~(r)} reaches a sufficiently large value at the point r in the region 
0 -< r  < to,,-1/v: lcpt>c2. 

2. The case of  a repulsive nuclear core. This case can take place if the 
function I '(r)l reaches a sufficiently large value at the point r in the region 

0 < r -< r0 z l/v: 19'1-> c21P~llpo . 
Therefore, the nonlinear equation (19) describing the nuclear,potential 

r allows the interpretation of  the experiments (Naumov, 1984) in which 
nuclear forces repulse as well as attract. 
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